non-abelian, soluble, monomial
Aliases: C33⋊7SD16, C6.17S3≀C2, D6⋊S3.S3, C33⋊4C8⋊3C2, C33⋊5Q8⋊2C2, C3⋊Dic3.12D6, (C32×C6).11D4, C32⋊4(D4.S3), C2.6(C33⋊D4), C3⋊2(C32⋊2SD16), (C3×D6⋊S3).1C2, (C3×C6).17(C3⋊D4), (C3×C3⋊Dic3).9C22, SmallGroup(432,584)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C3⋊Dic3 — C33⋊7SD16 |
C1 — C3 — C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊5Q8 — C33⋊7SD16 |
C33 — C32×C6 — C3×C3⋊Dic3 — C33⋊7SD16 |
Generators and relations for C33⋊7SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=b-1, eae=a-1, bc=cb, dbd-1=a, be=eb, dcd-1=c-1, ce=ec, ede=d3 >
Subgroups: 508 in 84 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3⋊C8, Dic6, C3⋊D4, C3×D4, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, S3×C6, C62, D4.S3, S3×C32, C32×C6, C32⋊2C8, D6⋊S3, C32⋊2Q8, C3×C3⋊D4, C3×C3⋊Dic3, C3×C3⋊Dic3, S3×C3×C6, C32⋊2SD16, C33⋊4C8, C3×D6⋊S3, C33⋊5Q8, C33⋊7SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊D4, D4.S3, S3≀C2, C32⋊2SD16, C33⋊D4, C33⋊7SD16
Character table of C33⋊7SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 8A | 8B | 12A | 12B | 12C | |
size | 1 | 1 | 12 | 2 | 4 | 4 | 4 | 4 | 8 | 18 | 36 | 2 | 4 | 4 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 54 | 54 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | -1 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | -√-3 | 0 | √-3 | √-3 | 0 | √-3 | -√-3 | -√-3 | 0 | 0 | 0 | 1 | 0 | complex lifted from C3⋊D4 |
ρ9 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | √-3 | 0 | -√-3 | -√-3 | 0 | -√-3 | √-3 | √-3 | 0 | 0 | 0 | 1 | 0 | complex lifted from C3⋊D4 |
ρ10 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ12 | 4 | 4 | 2 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | -2 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ14 | 4 | 4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 2 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | -2 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | -4 | 0 | -2 | -2 | 4 | -2 | 4 | -2 | 0 | 0 | 2 | 2 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ17 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | 0 | √3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ18 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | 0 | -√3 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ19 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | -1 | 2 | -√-3 | -√-3 | -√-3 | 0 | √-3 | √-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ20 | 4 | 4 | -2 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1+3√-3/2 | -2 | 1 | -1-3√-3/2 | 1 | ζ3 | 1 | ζ32 | 1+√-3 | 1 | ζ32 | ζ3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊D4 |
ρ21 | 4 | -4 | 0 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1-3√-3/2 | 2 | -1 | 1+3√-3/2 | -1 | 3+√-3/2 | -√-3 | -3+√-3/2 | 0 | √-3 | 3-√-3/2 | -3-√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | 4 | 2 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1+3√-3/2 | -2 | 1 | -1-3√-3/2 | 1 | ζ65 | -1 | ζ6 | -1-√-3 | -1 | ζ6 | ζ65 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊D4 |
ρ23 | 4 | -4 | 0 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1-3√-3/2 | 2 | -1 | 1+3√-3/2 | -1 | -3-√-3/2 | √-3 | 3-√-3/2 | 0 | -√-3 | -3+√-3/2 | 3+√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1+3√-3/2 | 2 | -1 | 1-3√-3/2 | -1 | -3+√-3/2 | -√-3 | 3+√-3/2 | 0 | √-3 | -3-√-3/2 | 3-√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | 4 | -2 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1-3√-3/2 | -2 | 1 | -1+3√-3/2 | 1 | ζ32 | 1 | ζ3 | 1-√-3 | 1 | ζ3 | ζ32 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊D4 |
ρ26 | 4 | -4 | 0 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1+3√-3/2 | 2 | -1 | 1-3√-3/2 | -1 | 3-√-3/2 | √-3 | -3-√-3/2 | 0 | -√-3 | 3+√-3/2 | -3+√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | -1 | 2 | √-3 | √-3 | √-3 | 0 | -√-3 | -√-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ28 | 4 | 4 | 2 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1-3√-3/2 | -2 | 1 | -1+3√-3/2 | 1 | ζ6 | -1 | ζ65 | -1+√-3 | -1 | ζ65 | ζ6 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33⋊D4 |
ρ29 | 8 | 8 | 0 | -4 | 2 | 2 | 2 | -4 | -1 | 0 | 0 | -4 | 2 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33⋊D4 |
ρ30 | 8 | -8 | 0 | -4 | 2 | 2 | 2 | -4 | -1 | 0 | 0 | 4 | -2 | -2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 23 9)(4 11 17)(6 19 13)(8 15 21)
(1 16 22)(3 24 10)(5 12 18)(7 20 14)
(1 22 16)(2 9 23)(3 24 10)(4 11 17)(5 18 12)(6 13 19)(7 20 14)(8 15 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)
G:=sub<Sym(24)| (2,23,9)(4,11,17)(6,19,13)(8,15,21), (1,16,22)(3,24,10)(5,12,18)(7,20,14), (1,22,16)(2,9,23)(3,24,10)(4,11,17)(5,18,12)(6,13,19)(7,20,14)(8,15,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)>;
G:=Group( (2,23,9)(4,11,17)(6,19,13)(8,15,21), (1,16,22)(3,24,10)(5,12,18)(7,20,14), (1,22,16)(2,9,23)(3,24,10)(4,11,17)(5,18,12)(6,13,19)(7,20,14)(8,15,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24) );
G=PermutationGroup([[(2,23,9),(4,11,17),(6,19,13),(8,15,21)], [(1,16,22),(3,24,10),(5,12,18),(7,20,14)], [(1,22,16),(2,9,23),(3,24,10),(4,11,17),(5,18,12),(6,13,19),(7,20,14),(8,15,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24)]])
G:=TransitiveGroup(24,1291);
Matrix representation of C33⋊7SD16 ►in GL4(𝔽7) generated by
1 | 0 | 4 | 0 |
5 | 6 | 1 | 4 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 1 |
5 | 3 | 5 | 3 |
3 | 5 | 2 | 3 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 6 | 3 | 0 |
0 | 2 | 4 | 5 |
3 | 4 | 2 | 5 |
2 | 2 | 6 | 3 |
1 | 0 | 0 | 5 |
5 | 6 | 0 | 2 |
4 | 4 | 1 | 6 |
0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(7))| [1,5,4,0,0,6,4,0,4,1,0,0,0,4,6,1],[5,3,0,0,3,5,0,0,5,2,1,0,3,3,0,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[0,0,3,2,6,2,4,2,3,4,2,6,0,5,5,3],[1,5,4,0,0,6,4,0,0,0,1,0,5,2,6,6] >;
C33⋊7SD16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_7{\rm SD}_{16}
% in TeX
G:=Group("C3^3:7SD16");
// GroupNames label
G:=SmallGroup(432,584);
// by ID
G=gap.SmallGroup(432,584);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,254,135,58,1684,571,298,677,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=b^-1,e*a*e=a^-1,b*c=c*b,d*b*d^-1=a,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export